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Exemple. Si X,Y et Z sont indépendantes, alors ch(X),Y? et Z3 sont indé-
pendantes.

En fait, nous voudrions pouvoir dire aussi que ch(X)+Y?2 est indépendante
de Z3. Pour cela, il faudrait savoir que (X,Y) est indépendant de Z, auquel
cas nous pourrions utiliser les fonctions f(x,y) = chz + y? et g(z) = 23. Ceci
est vrai. En effet, on a le résultat suivant.

5.2.1 Retour sur 'indépendance des tribus

Théoréme 5.2.2. Soit (A;)ier une famille de sous-tribus de (2, F) indépen-
dantes sous P. Soient J C I et K C I disjoints.
Alors les tribus o(Aj; 5 € J) et o(Ay; k € K) sont indépendantes.

Démonstration. On considere le w-systeme C défini par

ECJ, E fini el

ainsi que le w-systéeme D défini par

D= U N AyvVxe B A, € A}
ECK, FE fini zeE

Si B; € C, B peut s’écrire sous la forme By = ﬂE Az, oun B C J et E fini
xe

etouVe € E, A, € A;. De méme, si By € D, By peut s’écrire sous la forme

Bo= N A ouE C K etFE finietouVeeE', A, € A,. Ainsi
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P(BiNBy) = P n A, )= P(A;
(1 2) (a:E(EUE’) ) me(g&E’) ( )

T€ zeE’
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Comme C est un m-systeme qui engendre o(A;,j € J) et D un 7-systeme qui
engendre o(Ag, k € K), le théoréme BZ3 permet de conclure. O

Le résultat s’étend aisément au cas de plus de deux familles de tribus.

Corollaire 5.2.3. Soit (A;)ic; une famille de sous-tribus de (0, F) indépen-
dantes sous P. Soient (I)rcx des parties de I deux d deux disjointes. Pour
x € K, on note B, la tribu engendrée par les A;, ou j décrit I,. Alors les
tribus (Bz)zex sont indépendantes.
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Démonstration. Ainsi qu’on ’a déja noté, montrer qu’une famille de tribus est
indépendantes, c’est montrer que chaque sous-famille finie est indépendante.
Ainsi, il suffit de montrer le théoréeme dans le cas ou K est fini, mettons
K = {0,...,n}. D’apres la remarque faite au chapitre B, il suffit de montrer
que pour tout k entre 1 et n, By = 0(A;,j € Ij) est indépendant de la tribu
engendrée par les (B;)o<i<k—1, qui est aussi la tribu engendrée par les A;, pour

j € U I. Or ce dernier point découle directement du théoréme 622, ce

0<i<k
qui acheve la preuve. ]
Corollaire 5.2.4. Soient Cy,...,C, des familles de parties mesurables de
(Q, F). On suppose que les C; sont des mw-systémes et

n n n
que pour tout n-uplet (A;)1<i<n € '><1 Ci, on a ]P’( ﬂl Ai> = [I P(A)).
<i< X A )

Alors, les tribus o(C;) sont indépendantes.

Démonstration. Comme précédemment, il suffit de montrer que pour tout
k avec 1 < k < n, o(C) est indépendante de la tribu engendrée par les
(Ci)1<i<k- Or, cette derniere tribu est engendrée par le m-systeme des éléments

qui s’écrivent sous la forme ‘ﬂl A;, avec (Aj)i<i< € .><1 C;, d’ou le ré-
1= 1=

sultat avec le théoréme EZ 2. O

5.2.2 Vecteurs aléatoires indépendants

Théoréme 5.2.5. Soient (2, F,P) un espace probabilisé et Xi,..., X, des
vecteurs aléatoires. Les deux propositions suivantes sont équivalentes

1. Xq,..., X, sont indépendantes.
2. ]P)(Xl,...,Xn) =Py, ® --®Px,

n
Démonstration. Montrons 1 = 2. On pose C = [[ B(R™).
i=1
Soit A=A; x---x A, €C.0na

Pl (4) = B Xa) e ) =B ( i (X;e 4))

_ :1 P(X; € Aj) = iﬁ[l Py, (A) = (Px, ® - ® Px. )(A).

(2
Ainsi Pix, . x,) et Px; ® --- ® Px, coincident sur un 7-systéme qui engendre

n
'®1 B(R™). 11 s’ensuit que ces deux mesures sont égales.
1=

Montrons 2 = 1. Soient By, ..., B, quelconques tels que pour tout ¢ B;
soit o(X;)-mesurable. Alors, pour tout 4, il existe un borélien A; tel que



